Intermediate Mass Higgs 160 - 180 GeV

- $e^+e^- > ZH M_{Higgs} \sim 160 180 \text{ GeV/c}^2$
 - ⇒ Higgs ->WW dominates
 - ⇒ bb and ZZ about same order (a few percent)
 - ⇒ Above 200, ZZ ~ 10%
- WANT TO MEASURE:
 - \Rightarrow BF(H->WW), BF(H->ZZ), BF(H->bb)
 - $\rightarrow \Gamma(H->WW), \Gamma(H->ZZ), \Gamma(H->bb)$
 - » To get couplings
 - » Requires Γ_{TOT} !

OR

- $\Rightarrow \Gamma(H->WW)/\Gamma(H->ZZ)$
 - » Which doesn't require Γ_{TOT} , gives ratio of couplings
- So Key piece is $\sigma(e^+e^- -> ZH)$

- Use Z-> l⁺l⁻ and Missing Mass to count Higgs?
 - ⇒ Missing mass is mass recoiling against Z

$$M_{miss} = \sqrt{s - 2\sqrt{s}(E_{l^{+}} + E_{l^{-}}) + M_{l^{+}l^{-}}^{2}}$$

- ⇒ High Efficiency, Well Understood systematics in lepton ID
- Procedure:
 - ⇒ Pythia generates ZH, forces Z to e⁺e⁻, decays Higgs however

⇒ SIMDET

- » Use energy flow objects to identify electrons SIMDET matches calorimeter and track info to identify particles
 - Ecal > 25 GeV
 - Hcal/Ecal < 0.05
 - 1 track object

- Common /SIFLOC/
 - \Rightarrow PECA(5) & PHCA(5)
 - » Energy, θ , ϕ , Time, Prob consistent with em/mip
 - \Rightarrow PTRK(15)
 - » P, θ , ϕ , charge, IP(r ϕ), IP(rz), Cov(9)
 - » IP(rz) and Cov entries are not filled?
 - \Rightarrow PBST(6)
 - » Px, Py, Pz, E, m, Q best estimates
- Common /PWCPPP/
 - \Rightarrow PP(10,2000)
 - » Internal particle storage
 - PP(I,0) is generated info
 - PP(I,loccpa) is simulated info (loccpa in Common/SICNTR/)
 - » Px,Py,Pz,E,m,Q,IP(rφ),IP(rz),Ntrk,Particle ID
 - NB: IP are in units of σ !

- Mass distribution using 2 highest energy electrons
 - ⇒ Not necessarily from the Z ... W decays to electrons also included

o At Generator Level:

⇒ Everything looks fine

 Missing Mass resolution changes with center of mass energy!

- Investigated SIMBTAG routine
 - ⇒ Uses track impact parameters to calculate the probability a grouping of tracks is consistent with coming from the primary vertex
 - ⇒ Developed at 🛪
 - ⇒ Track 3d IP distributions

Jet Probability

$$P_{track} = \frac{1}{1 + A/B} \left(e^{\left(\frac{-IP^2}{2}\right)} + A/B e^{\left(\frac{-B}{IP}\right)} \right)$$

- Use Z-> uds to define the variables
- Combine set of tracks to get the jet probability

$$P_{jet} = \Omega \sum_{k=0}^{N-1} \frac{(-\ln \Omega)^k}{k!}$$
, where $\Omega = \prod_{1}^{N} P_{track}$

- Track probability for tracks from the primary vertex is uniformly distributed from 0 to 1 (by construction)
- Jet Probability is also uniformly distributed from
 0 to 1 by construction

Where do we go from here?

- How to pick jets
 - ⇒ For use in W, Z, b identification
 - ⇒ Jet-Jet Mass distributions
- W identification
 - ⇒ Lepton + Missing Energy
 - ⇒ Jet-Jet Mass
- Z identification
 - ⇒ Dilepton mass
 - ⇒ Jet-Jet Mass
- B id
 - ⇒ Define how to pick tracks that enter SIMBTAG